3a^2+1=100

Simple and best practice solution for 3a^2+1=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3a^2+1=100 equation:



3a^2+1=100
We move all terms to the left:
3a^2+1-(100)=0
We add all the numbers together, and all the variables
3a^2-99=0
a = 3; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·3·(-99)
Δ = 1188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1188}=\sqrt{36*33}=\sqrt{36}*\sqrt{33}=6\sqrt{33}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{33}}{2*3}=\frac{0-6\sqrt{33}}{6} =-\frac{6\sqrt{33}}{6} =-\sqrt{33} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{33}}{2*3}=\frac{0+6\sqrt{33}}{6} =\frac{6\sqrt{33}}{6} =\sqrt{33} $

See similar equations:

| 3x+3+x+17=5x+3 | | 3e+16=X | | 9x-4(6-x)=28 | | 3y-5=-5 | | 7n-18=42n-11 | | 32=r(5/4) | | 2s=549 | | 8+x6=2x+8 | | 7(7v-2)=280 | | 1.5x=6.25+1.25x | | 7(x-6)=30 | | -1/2x=2.6 | | -18=-7x+4x | | 61-6a=-11 | | s/5+8.4=12/8 | | 4w=25 | | 2x+3+2=x+5 | | 3x+18=24-3x | | 1+x+8=6 | | 5c-3=4-6c | | 14n+23=28n+16 | | 1.2=4y+13.6 | | 14n-23=28n-16 | | 14n-23=28n+16 | | 1.07(1.27)(6-x)=8 | | r^2-19=-8r | | 5r^2+7=10r | | 2(x+7)=6x+9-9-4x | | 3n-5=6n-2 | | -13=-5k+13k | | 3n-5=6-2 | | 3n=5+6=2 |

Equations solver categories